

An Overview of Exercise Stress Testing And It's Value In Patient Management

Al Heuer, PhD, MBA, RRT-ACCS, RPFT, FAARC
Rutgers – School of Health Professions
Co-Owner A & T Lectures

Learning Objectives

- Review Key Definitions
- Describe the Indications and Contraindications
- Examine the Equipment
- Review the Set-up and Procedure
- Evaluate and Interpret Test Results
- Brief Review of 6-Minute Walk Test
- Examine Key References

Definition and Goal of Cardiopulmonary Stress Testing (CPET)

- Definition: CARDIO-PULMONARY exercise testing evaluates, characterizes and quantifies the physiologic response of the heart lungs and muscles to an increase in physical stress.
- Goal: The goal of CARDIO-PULMONARY exercise testing is to evaluate the physiologic response of the 2 heart 2 lungs and 2 muscles to an increase in physical stress

Major Indications Evaluation of dyspnea

- - Distinguish cardiac vs pulmonary vs peripheral limitation vs others
- Detection of exercise-induced bronchoconstriction detection of exertional desaturation
- Detection of exertional desaturation
- Disability determination
- Pulmonary Rehabilitation
 - Exercise intensity/prescription
 - Response to participation
- Pre-op evaluation and risk stratification
- Assess response to therapy

Absolute Contraindications

- Acute MI
- Unstable angina
- Unstable arrhythmia
- Acute endocarditis, myocarditis, pericarditis
- Syncope
- Severe, symptomatic Atrial Stenosis
- Uncontrolled CHF
- Acute PE, DVT
- Respiratory failure
- Uncontrolled asthma
- SpO2 < 88% on R/A

Relative Contraindications

- Left main or 3-V CAD
- Severe arterial HTN (>200/120)
- Significant pulmonary HTN
- Tachyarrhythmia, bradyarrhythmia
- High degree AV block
- Hypertrophic cardiomyopathy
- Electrolyte abnormality
- Moderate stenotic valvular heart disease
- Advanced or complicated pregnancy
- Orthopedic impairment

Screening & Initial Evaluation

- HISTORY: tobacco use, medications, tolerance to normal physical activities, any distress symptoms, contraindicated illnesses
- PHYSICAL EXAM: height, weight, assessment of heart, lungs, peripheral pulses, blood pressure
- EKG
- PULMONARY FUNCTION TESTS: spirometry, lung volumes, diffusing capacity, arterial blood gases

Prior to Test

- Wear loose fitting clothes, low-heeled or athletic shoes
- Abstain from coffee and cigarettes at least 2 hours before the test
- Continue maintenance medications
- May eat a light meal at least 2 hours before the test

Exercise Modalities

- Advantages of cycle ergometer
 - Cheaper
 - Safer Less danger of fall/injury
 - Can stop anytime
 - Direct power calculation
 - Independent of weight
 - Holding bars has no effect
 - Little training needed
 - Easier BP recording, blood draw
 - Requires less space less noise
- Advantages of treadmill
 - Attain higher VO2
 - More functional

Equipment & Instrumentation

- Treadmill or cycle ergometer can be used for exercise
 - Cycle preferred because:
 - Ease of measurements (ABGs, BP)
 - Better patient safety (falling not likely)
 - Power can be directly measured
- Ability to continuously monitor and print 12-lead ECG
- Manual or automatic BP device
- Pulse oximeter

Equipment & Instrumentation (cont.)

- Gas analyzers for O₂ and CO₂
 - Mass Spectrometer gold standard
- Breathing valves
- Ability to measure volume

Treadmill with Computerized ECG and Controller

Summary of the Procedure

- After screening, the patient is connected to monitoring equipment, including BP, HR, RR, inspired FIO2 and exhaled CO2, VT and Minute Ventilation.
- They are then subjected to and increasing workload, per a specified protocol.
 - The Bruce protocol: Multiple exercise stages of three minutes each. At each stage, the gradient and speed of the treadmill are elevated to increase **work output, called METS**. Stage 1 of the Bruce protocol is performed at 1.7 miles per hour and a 10% gradient. Stage 2 is 2.5 mph and 12%, while Stage 3 goes to 3.4 mph and 14%.
- Parameters are measured at each step of the protocol and calculations are then done, which are then interpreted.
- The test is halted if the patient can not continue per the protocol or if adverse responses are noted.

Key Features of the Test

- Symptom-limited exercise test
- Measures airflow, SpO2, and expired oxygen and carbon dioxide
- Allows calculation of peak oxygen consumption, anaerobic threshold

Cardiopulmonary Exercise Testing— Work Unit=MET

- Standard work unit used for exercise testing is the metabolic equivalent of task (MET): 1 MET = 3.5 mL O₂ consumption/kg of body weight, about equal to normal resting O₂ consumption/minute.
- MET levels are varied during exercise by altering treadmill speeds and inclinations. Most protocols increase exercise intensity by 1–2 METs at each step-up in workload.

Indications to Terminate

- Patient's request: fatigue, dyspnea, pain
- Ischemic ECG changes
 - 2 mm ST depression
 - Chest pain suggestive of ischemia
 - Significant ectopy
- 2 nd or 3rd degree heart block
- BP sys >240-250,
- BP dias >110-120
- Fall in BPsys >20 mmHg
- SpO2 < 85%

Mechanism to Exercise Limitation

Pulmonary

- Ventilatory impairment
- Respiratory muscle dysfunction
- Impaired gas exchange

Cardiovascular

- Reduced stroke volume
- Abnormal HR response
- Circulatory abnormality
- Blood abnormality

Peripheral

- Inactivity Atrophy
- Neuromuscular dysfunction
- Malnutrition
- Other- Perceptual, Motivational, Environmental

CPET Measurements

- Work
- VO2
- VCO₂
- HR
- ECG
- BP
- RR
- SpO₂
- Anaerobic Threshold (AT)
- ABG Lactate
- Dyspnea

Pulmonary Parameters

- MINUTE VENTILATION
 - NORMAL = 5 6 liters/ min --AT EXERCISE = 100 liters/min
 - Increase is due to stimulation of the respiratory centers by brain motor cortex, joint propioceptors and chemoreceptors
 - ANAEROBICTHRESHOLD (AT) the minute ventilation increases more than the workload
- TIDAL VOLUME: NORMAL = 500 ml
 - DURING EXERCISE = 2.3 3 liters
 - Increases early in the exercise
- BREATHING RATE
 - NORMAL = 12 16 / min AT EXERCISE = 40 50 / min
- DEAD SPACE / TIDAL VOLUME ratio
 - NORMAL = 0.20 0.40 -- AT EXERCISE = 0.04 0.20
 - Decrease is due to increased tidal volume with constant dead space

Pulmonary Parameters (Cont.)

- PULMONARY CAPILLARY BLOOD TRANSIT TIME 2 NORMAL = 0.75 second
 - AT EXERCISE = 0.38 second
 - Decrease is due to increased cardiac output
- ALVEOLAR-ARTERIAL OXYGEN DIFFERENCE
 - NORMAL = 10 mm Hg --AT EXERCISE = 20 30 mm Hg
 - Changes very little until a heavy workload is achieved.
- OXYGENTRANSPORT
 - Increase in temperature, PCO2 and relative acidosis in the muscles ->
 increase in release of Oxygen by blood for use by the tissues for
 metabolism.

Cardiovascular Parameters

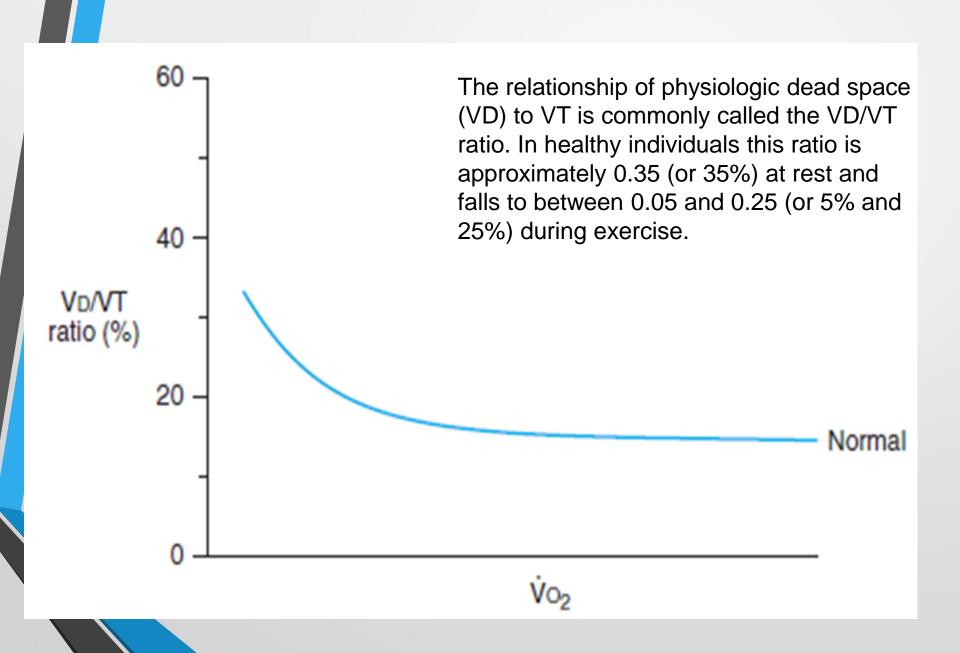
- CARDIAC OUTPUT NORMAL = 4 6 liters / min
 - AT EXERCISE = 20 liters / min
 - increase is linear with increase in workload during exercise until the point of exhaustion.
- STROKE VOLUME NORMAL = 50 80 ml
 - AT EXERCISE = double
 - Increase is linear with increase in workload
- HEART RATE NORMAL = 60 100 /min AT EXERCISE = 2.5 4 times the resting HR
 - HR max is achieved just prior to total exhaustion, physiologic endpoint of an individual
 - HR max = $220 age \text{ or HR max} = 210 (0.65 \times age)$
- OXYGEN PULSE= VO2/ HR NORMAL = 2.5 4 ml O2 / heartbeat
 - AT EXERCISE = 10 15 ml
 - With increasing muscle work during exercise, each heart contraction must deliver a greater quantity of oxygen out to the body.
- BLOOD PRESSURE DURING EXERCISE:
 - Systolic BP increases (to 200 mm Hg)
 - Diastolic BP is relatively stable (up to 90 mmHg)
 - Increase in Pulse Pressure (difference between Systolic and Diastolic pressures)
- ARTERIAL VENOUS OXYGEN CONTENT DIFFERENCE
 - mL of O2 / 100 ml of blood
 - NORMAL = 5 vol %
 - AT EXERCISE = 2.5 − 3 times higher ② the increase is due to the greater amounts of Oxygen that are extracted by the working muscle tissue

Metabolic Parameters

OXYGEN CONSUMPTION

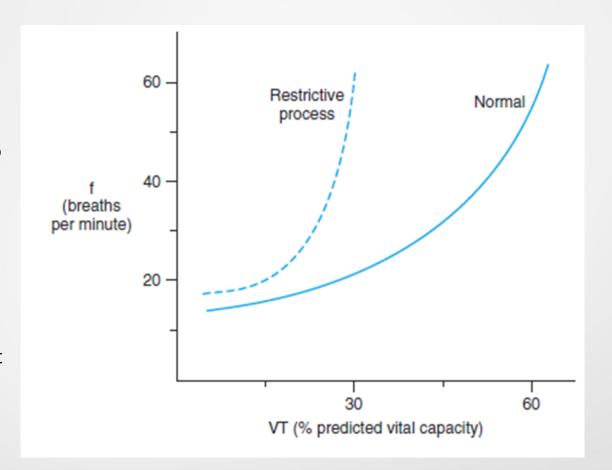
- NORMAL = 250 ml / min 3.5 4 ml / min / kg
- Increases directly with the level of muscular work until exhaustion occurs and until individual reaches VO2max
- NORMAL RANGE = 1,700 5,800 ml / min

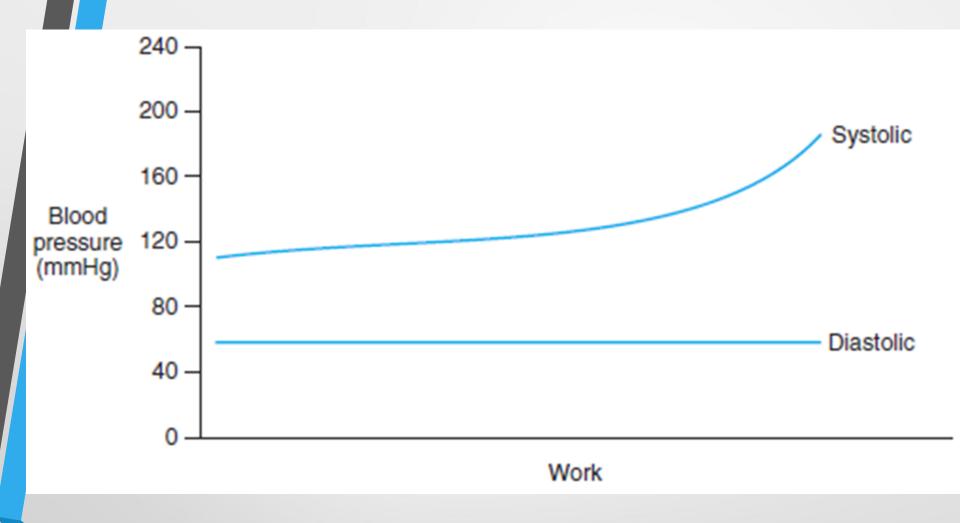
CARBON DIOXIDE PRODUCTION

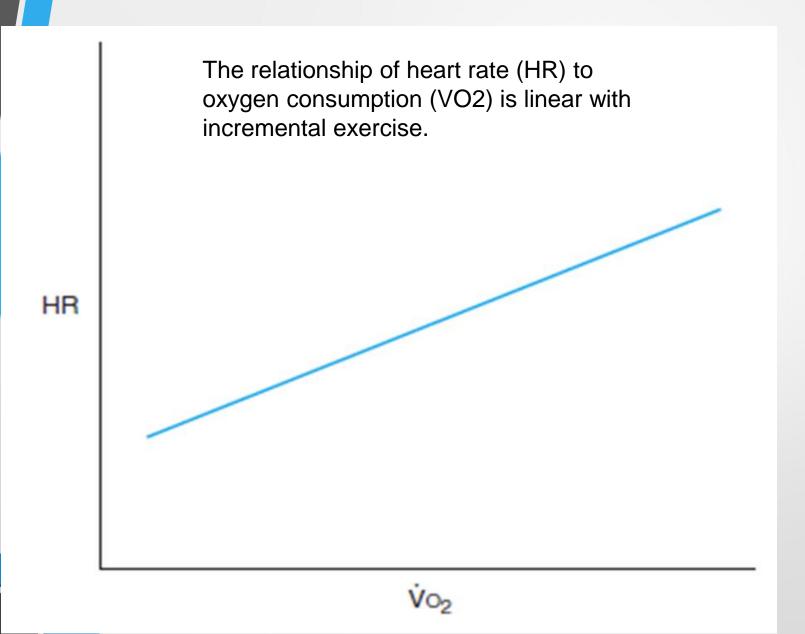

- NORMAL = 200 ml / min 2.8 ml / min / kg
- AT EXERCISE initial phase, increases at same rate as VO2
- Once Anaerobic Threshold (AT) is reached, increases at a faster rate than VO2 due to increased acid production

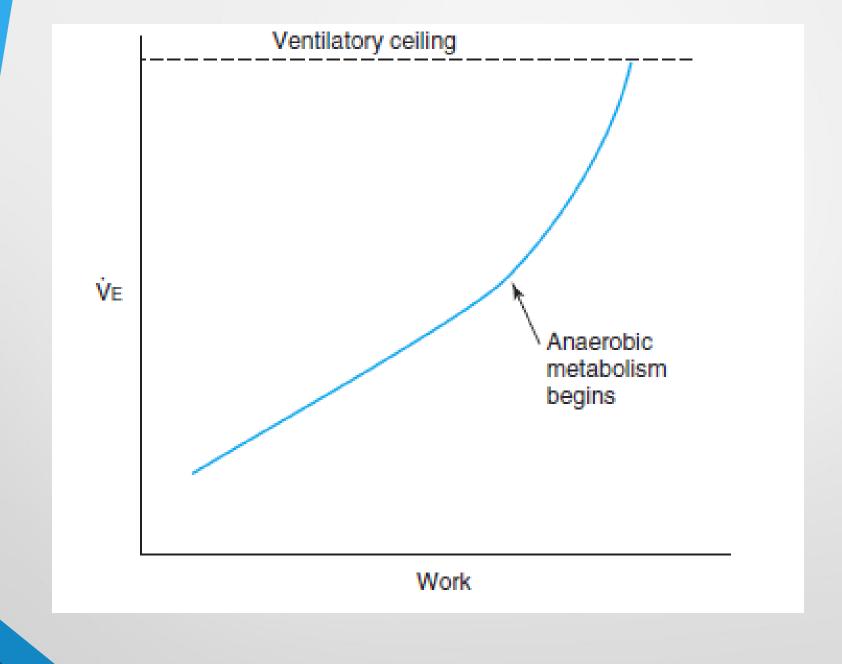
ANAEROBIC THERSHOLD (AT)

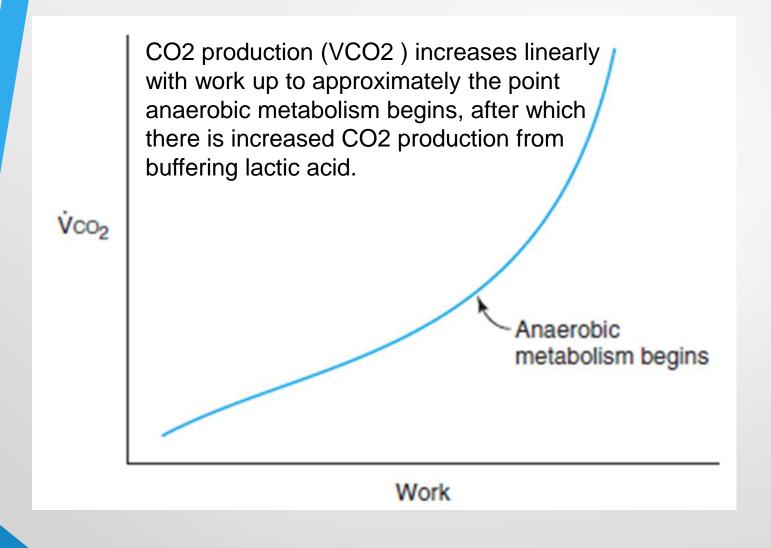
- NORMAL: occurs at about 60% of VO2 max
- Followed by breathlessness, burning sensation begins in working muscles

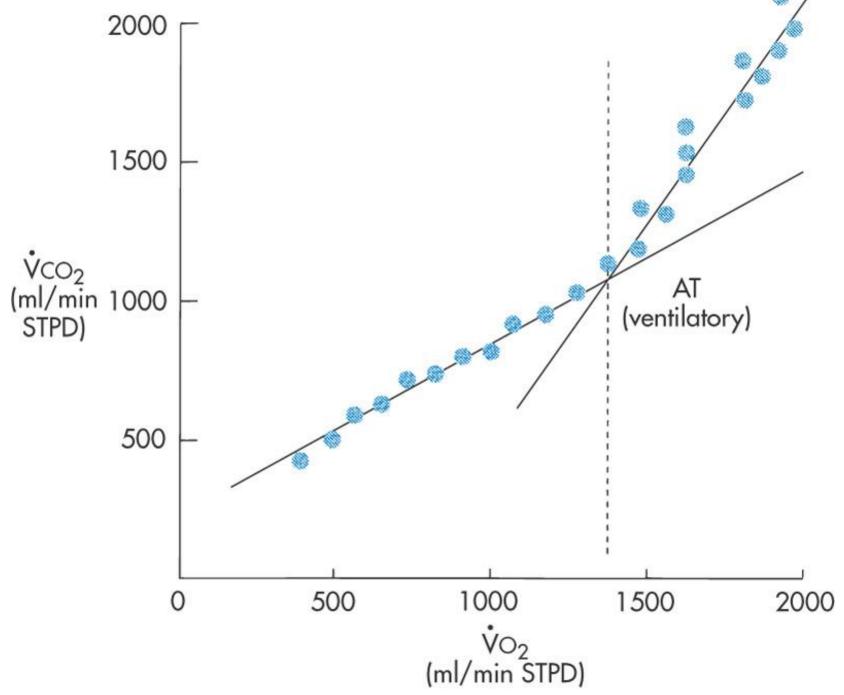

RESPIRATORY QUOTIENT (RQ)


- RESTING LEVEL = 0.8
- AT = 1.0 or more 2 may exercise for a short time on 1.5
- RER = CO2 produced / O2 consumed = VCO2 / VO2


The VT increases up to approximately 60% of the patient's VC and levels off, while f increases up to 50 to 60 breaths/min.


In patients with restrictive processes the relationship between f and VT is shifted upward and to the left (dashed line). This is a result of their rapid shallow breathing pattern.





Systolic blood pressure increases 80 to 150 mmHg during exercise in healthy individuals. The diastolic blood pressure generally remains near resting levels.

Basic Interpretation

Variable	Normal	Clinical Significance
SaO ₂ & PaO ₂	≥ 95% 80-100 torr ≤ 4% decrease	Decreased in ILD and Pulmonary Vascular Disease Normal in heart failure, obesity and deconditioning.
P (A-a) O2	< 35 mm Hg	Increased in COPD, ILD and Pulmonary Vascular Disease. Normal in Heart failure & Deconditioned.
VD/VT	< 0.28	Increased in Heart Failure, COPD, ILD and Pulmonary Vascular Disease Normal in Obesity & Deconditioned.
VE/VCO2 at AT	< 34	Increased in Heart Failure, COPD, ILD and Pulmonary Vascular Disease Normal in Obesity & Deconditioned.

Basic Interpretation (Cont)

Variable	Normal	Clinical Significance
VO2 Max Peak	>84%	Decreased in heart failure, COPD, ILD, Pulmonary Vascular Disease, obesity and deconditioning.
AT	> 40% VO2 Max	Decreased in heart failure, COPD, Pulmonary Vascular Disease and deconditioning.Normal in Obesity
Heart Rate Heart Rate Reserve	> 90% Max < 15 beats/min.	Decreased in COPD, ILD, Pulmonary Vascular Disease, obesity and deconditioning Normal in Heart Failure.
Oxygen Pulse	> 80%	Decreased in heart failure, COPD, ILD, Pulmonary Vascular Disease and deconditioning. Normal in Obesity
VE Max	70-80%	Increased or normal in heart failure, COPD, ILD, Pulmonary Vascular Disease, obesity and deconditioning.

Simplified Interpretation

- Heart Disease
 - Breathing reserve >30%
 - Heart rate reserve <15%
- Pulmonary Disease
 - Breathing reserve > 30%
 - Heart rate reserve >15%

An Adjunct to the CXT--6-Minute Walk Test

- The 6-minute walk test (6MWT) measures the distance a patient can walk on a flat surface in 6 minutes.
- It evaluates response to exertion and is used to determine overall functional capacity or changes in capacity due to therapy in patients with moderate to severe heart or lung disease.
- The 6MWT does not measure O₂ uptake, nor does it help identify either the cause of dyspnea or the factors limiting exercise tolerance.
- If such information is needed, you should recommend a comprehensive cardiopulmonary exercise test.

Indications for the 6-Minute Walk Test

Table 3-6 Indications for the 6-Minute Walk Test

Functional Status (Single Measurement)	Pre-/Post-Treatment Comparisons	
Chronic obstructive pulmonary disease (COPD)	Lung transplantation	
Cystic fibrosis	Lung resection	
Heart failure	Lung volume reduction surgery	
Peripheral vascular disease	Pulmonary rehabilitation	
Fibromyalgia	COPD	
Effects of aging	Pulmonary hypertension	
	Heart failure	

6-Minute Walk Test - Procedure

- Contraindications:
 - Absolute: A recent myocardial infarction (MI) or experienced unstable angina.
 - Relative: A resting heart rate > 120 beats/min; BP > 180/100 mm Hg
- The American Thoracic Society (ATS) standardized protocol (Excerpt)
 - The object of this test is to have the patient walk as far as possible for 6 minutes. The patient will
 probably get out of breath or become exhausted. The patient is permitted to slow down, stop or r
 as necessary. able.
 - Equipment: a stopwatch, a movable chair, a recording worksheet, a sphygmomanometer, and a visual Borg Scale to assess the patient's dyspnea and level of exertion. If used, a pulse oximeter m be lightweight and not have to be held by the patient while walking.
- Stop the test if the patient develops chest pain, severe dyspnea, etc.
- Outcomes Measures: Distance, Borg Dyspnea Level, SPO2
- Interpretation:
 - Most 6MWTs will be done before and after intervention, and the primary question is whether the patient has experienced a clinically significant improvement.
 - Until further research is available, The ATS recommend that's pre/post changes in 6MWD be expressed as an absolute value (e.g., the patient walked 50 m farther).

Take Home Messages

- Cardio Pulmonary Exercises Stress Testing Can be Very Valuable
 - Distinguish among causes of exertional dyspnea
 - Disability determination
 - Screening for Pulmonary Rehabilitation
 - Pre-op evaluation and risk stratification
 - Assess response to therapy
- However, it can be expensive and inconvenient.
- It should be ordered with discretion and adjuncts such as the 6 Min Walk text considered.

Selected Sources & References

- Kacmarek, Stoller, Heuer, Egan's Fundamentals of Respiratory Care, ed 12 2021.
- Heuer & Scanlan, Clinical Assessment in Respiratory Care, ed. 9, 2021.
- Culver B, Grahan B, Coates A, et al, Recommendations for a Standardized Pulmonary Function Report. An Official American Thoracic Society Technical Statement, Vol 196, (11) 2018.
- Mezzani A Cardiopulmonary Exercise Testing: Basics of Methodology and Measurements, Ann Am Thorac Soc, 2018 Jul;14(Supplement-1):S3-S11

. .