CAPNOGRAPHY (ETCO2)-PRACTICAL APPLICATIONS Al Heuer, PhD, MBA, RRT-ACCS, RPFT, FAARC Professor-Rutgers University Co-Owner- A & T Lectures

LEARNING OBJECTIVES--ETCO2

- Objectives
 - Explain Indications for EtCO2
 - Illustrate Some of the Equipment
 - Review related research
 - Define what is a normal EtCO2 value
 - Define what are abnormal values/waves & their causes
 - Identify the different wave forms
 - Furnish Add'l Resources

RELATED TERMINOLOGY

- *Capnography* Analysis of waveform (and often numeric value) of exhaled CO2
- **Capnometry** Measuring the numeric value of exhaled CO2
- Colormetry Dichotomous measurement— Purple versus Yellow.
 - Less reliable than waveform!!!
 - In CPR, if no circulation, little CO2 reaching the alveoli = little color change.
 - If High CO2, color may stay yellow after initial change

WHO DO WE MONITOR & WHY?

- Immediately following intubation-Tube placement
- During CPR-Effectiveness of:
 - Compressions & Ventilation
- Monitoring mechanically ventilated patients, especially for
 - Acutely Ill -- ARDS
 - Weaning
 - Transport
- Patients at risk for hypoventilation
 - > Neuromuscular
 - Moderate sedation

CAPNOGRAPHY

Capnography Depicts Respiration

COLORMETRIC DETECTOR

COMBO CANNULA -- O2 ADMINISTRATION AND ETCO2 MONITORING

A NEWER INDICATION- CAPNOGRAPHY IN CPR

- Assess chest compressions
- Early detection of ROSC
- Objective data for decision to cease resuscitation

ETCO2 & CPR-SOME DATA

- Sanders, et al, JAMA, 1989- ETCO2 correlates to outcomes in CPR.
- A 2005 study comparing field intubations that used capnography to confirm ETT placement vs. non-capnography use showed a 0% unrecognized misplaced ETT and 23% in the non-EtCO2 monitored group
- Confirm ETI with waveform capnography!!

MORE DATA--ETCO₂, CPR & SURVIVAL

• Non-survivors

• Average ETCO₂: 4-10 mmHg

• Survivors (to discharge)

• Average $ETCO_2$: >30 mmHg

STILL MORE DATA- ETCO2 & CPR QUALITY

•CPR Quality: • Bad CPR = ETCO2 < 15• Good CPR = ETCO2>15 \circ ROSC = ETCO2 increases • Suddenly by 15 • ETCO2 = 35 - 40

GRAPHIC DEPICTION OF ROSC

Figure 6. Capnogram Trend Indicating Return Of Spontaneous Circulation

During cardiopulmonary resuscitation, an abrupt rise in ETCO₂ to normal or greater-than-normal levels indicates improved cardiac output and ROSC.

POTENTIAL PREDICTIVE VALUE

- There may be a *direct relationship* between ETCO2 level and Mortality in ARDS/ALI.
- Research:
 - Blanch L, et al (1999) Eur Respir J
 - Lucangelo U, et al (2008) Chest.

THE OTHER *MAJOR* INDICATION-MONITORING VENTILATION

• Spontaneous Breathing Patients

- Neuromuscular
- COPD

• Mechanically Ventilated Patients

- Continuous Noninvasive
- Appropriateness of Settings
- Weanability

THE NUMBERS--NORMAL VALUES

• Normal values

- Normal Range 7.35 to 7.45
- Normal EtCO2 is 30-43mmHg
- Normal PaCO2 is 35-45mmHg

OUR RESPONSE TO ABNORMAL ETCO2

- How do we stabilize abnormal EtCO2 values?
 - By adjusting minute ventilation

oIf ETCO2 is high - ↑ Ventilation

oIf ETCO2 is Low - \downarrow Ventilation

OUR RESPONSE CONT.-ETCO2

- Stabilizing Abnormal values
 - > EtCO2 greater than 43mmHg
 - Increase tidal volume
 - Increase respiratory rate

OUR RESPONSE CONT.-ETCO2

• Stabilizing abnormal values

EtCO2 less than 30mmHg
Decrease respiratory rate and/or
Decrease tidal volume
Add dead-space? — If head injury

EXAMPLE: NORMAL CAPNOGRAM

Normal capnogram, stable trend ETCO₂/PaCO2 gradient 4 mmHg

NORMAL CAPNOGRAPHIC WAVEFORM

- Normal waveform of one respiratory cycle
- Similar to ECG
 - > Height shows amount of CO₂
 - > Length depicts time

NORMAL CAPNOGRAM -Phase I

NORMAL CAPNOGRAM - PHASE II

NORMAL CAPNOGRAM -PHASES III & IV

Abnormal Capnograph Waves

Endotracheal Tube in Esophagus

Possible Causes:

- Missed intubation
 - ♦ When the ET tube is in the esophagus, little or no CO2 is present

◆A normal capnogram is the best indication of proper ET tube placement

Abnormal Capnograph Waves

Obstruction in Airway or Breathing Circuit

Possible Causes:

- Partially kinked or narrowed artificial airway
- Presence of foreign body in the airway
- Obstruction in expiratory limb of breathing circuit
- Bronchospasm

Abnormal Capnograph Waves

Inadequate Seal Around ET Tube

Possible Causes:

Leaky or uncuffed endotracheal or trach tube

Artificial airway that is too small for patient

Abnormal Capnograph

Possible Causes:

ABNORMAL CAPNOGRAPH WAVES Hyperventilation - Decrease in $ETCO_2$

Possible Causes:

COMMON EXAMPLE: INCREASE IN MINUTE VENTILATION

Sudden decrease in ETCO₂ from 38 mmHg to 20 mmHg and the RR increases from 12 to 24 bpm

COMMON EXAMPLE: HYPOVENTILATION

Pt. receives 5mg MS for pain
EtCO2 climbs from 37 mmHg to 45 mmHg

CAPNOGRAPHY WAVEFORM PATTERNS

BRONCHOSPASM WAVEFORM PATTERN

• Bronchospasm hampers ventilation

- > Alveoli unevenly filled on inspiration
- > Empty asynchronously during expiration
- Asynchronous air flow on exhalation dilutes exhaled CO₂
- Alters the ascending phase and plateau
 - > Slower rise in CO_2 concentration
 - > Characteristic pattern for bronchospasm
 - > "Shark Fin" shape to waveform

CAUSES OF AN ELEVATED ETCO2

Metabolism

- Overdose / sedation
- Malignant hyperthermia

Circulatory System

 Increased cardiac output - with constant ventilation

Respiratory System

- Respiratory insufficiency
- Respiratory depression
- Obstructive lung disease

Equipment

Defective exhalation valve

CAUSES OF A DECREASED $ETCO_2$

Metabolism

- Pain
- Anxiety

Circulatory System

- Cardiac arrest
- Embolism
- Sudden hypovolemia or hypotension

Respiratory System

 Alveolar hyperventilation

Equipment

- Leak in airway system
- Partial airway obstruction
- ETT in hypopharynx

SUMMARY

- Capnography can be a useful Assessment Tool
- Understand that it is a relatively straight forward, but valuable tool—A little knowledge can go a long way!!!
- Know the indications & limitations
- Recognize normal wave forms/values, the abnormals and how to rectify them
- Know where there are add'l resources

SELECTED REFERENCES

- AARC.org
- Egan's Fundamentals of Respiratory Care, ed 12, Kacmarek, Stoller & Heuer, 2021.
- Clinical Assessment in Respiratory Care, ed. 8, Heuer & Scanlan, 2018.
- Respiratory Disease: A Case Study Approach to Patient Care, ed 3, 2007.
- Pubmed
- Medline